Continuous and Discrete Time: How Differing Perspectives on Modeling Time Affect Developmental Inferences

Pascal R. Deboeck

University of Utah

Society for the Study of Human Development December 15, 2017

Introduction

- Methodology for modeling repeated observations
- Availability of intraindividual data
- Intraindividual variability
- Time is unlike other dimensions sampled in the social, behavioral, and medical sciences
- Sampling across time is always discrete, the underlying dimension is continuous

Today's Presentation

- Provide two Perspectives: Discrete, Continuous Time
- Contrasting Two Models: Implicit, Explicit Consideration of Time Between Observations
- Substantive Example: Similarities and Differences in Inferences
- Challenges and Potential of Continuous Time Models

Substantive Example

Challenges & Potential 0000

Diagramning Conventions

Note: While using conventions common to Structural Equation Modeling, many diagrams in the presentation will neglect variances, covariances to focus on key conceptual issues

Substantive Example

Challenges & Potential

Repeated Observations

< 🗗

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Substantive Example

Challenges & Potential

Repeated Observations

< 🗗

Substantive Example

Challenges & Potential 0000

The Fundamental Difference

Substantive Example

Challenges & Potential 0000

Diagramming Conventions

Substantive Example

Challenges & Potential 0000

Implicit Modeling of Time

pascal@psych.utah.edu, www.intraindividual.com

Substantive Example

Challenges & Potential 0000

Implicit Modeling of Time

•
$$X_T = \beta_0 + \beta_1 X_{T-1}$$

• Implicit Time, Discrete Time Model

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Challenges & Potential

How do People Change from One Time to the Next?

- X_T = some function of time
- Assumption: the constructs exist between A and B

pascal@psych.utah.edu, www.intraindividual.com

Substantive Example

Challenges & Potential

The Construct Exists between A and B

- Silly model if interested in development
- $X_T = 1 * X_{T-dt}$
- dt is some infinitesimally small amount of time
- Does the construct change?

Challenges & Potential

The Construct Changes

- $X_T = 1 * X_{T-dt} + (dt) * \left(\frac{dX}{dt}\right)$
- $\frac{dX}{dt}$ is the momentary rate of change of X with respect to time (first derivative/velocity)
- X_{current} = X_{prior} + (time changing)(rate of change)
- What defines the change from one moment to the next?

Challenges & Potential

There could be Stochastic (Random) Perturbations

Challenges & Potential

Constructs May Self–Regulate

•
$$c_{dt} = p \times r_{-dt} + c$$

• $c_{dt} \sim N(0, \sigma^2)$

Implicit, Explicit Models

Substantive Example

Challenges & Potential

Do Constructs Affect Each Other? How?

Challenges & Potential

How Do Variables Affect Each Other?

		Level	Velocity
	Level	Level-Level:	
		Are high levels of maternal	
		depression observed with	
		high levels of child behavior	
		problem?	28" 185
Construct 1	Velocity	Velocity-Level:	Velocity-Velocity:
		Is a mother's level of	Does the rate at which mother's
		depression, regardless of	depressive symptoms increase
		whether her symptoms are	or decrease (velocity) predict
		changing or not, related to	the rate at which her child's
		the rate at which her child's	behavior problems increase or
		behavior problems increase	decrease (velocity),
		or decrease (velocity)?	independent of her level of
			depression?

Construct 2

pascal@psych.utah.edu, www.intraindividual.com

Implicit, Explicit Models

Substantive Example

Challenges & Potential

Perhaps Level Relates to Velocity (Change)

Substantive Example

Challenges & Potential

Implicit Time Modeling

- Cole, Martin, Peeke, Seroczynski, & Fier, 1999; Cole, Martin, & Powers, 1997; Cole, Peeke, Dolezal, Murray, & Canzoniero, 1999
- 291 children in grades 3, 4, and 5
- Children were assessed on Anxiety, Depression, and Social Competence (self-report of the children)
- Model are built on literature suggesting that both Anxiety (X) and Depression (M) affect Social Competence (Y), but that Anxiety (X) is often a precursor to Depression (M)
- Longitudinal Mediation

Substantive Example

Challenges & Potential

Discrete Time Model: Cross-lagged Panel Model

Challenges & Potential

Discrete Time Model: Cross-lagged Panel Model

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Substantive Example

Challenges & Potential

Discrete Time Model: Cross-lagged Panel Model

pascal@psych.utah.edu, www.intraindividual.com

Implicit, Explicit Model

Substantive Example

Challenges & Potential

Discrete Time Model: Cross-lagged Panel Model

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Implicit, Explicit Model

Substantive Example

Challenges & Potential

Discrete Time Model: Cross-lagged Panel Model

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Substantive Example

Challenges & Potential 0000

Continuous Time Model

pascal@psych.utah.edu, www.intraindividual.com

University of Utah

Substantive Example

Challenges & Potential

Continuous Time Model

Implicit, Explicit Mode

Substantive Example

Challenges & Potential

Continuous Time Model

Implicit, Explicit Mode

Substantive Example

Challenges & Potential

Continuous Time Model

pascal@psych.utah.edu, www.intraindividual.com

Implicit, Explicit Mode

Substantive Example

Challenges & Potential

Continuous Time Model

pascal@psych.utah.edu, www.intraindividual.com

Challenges & Potential

Substantive Results & Potential

- Model Fit Equivalent (same χ^2 , df)
- Time-Invariant Effects
 - Means, Variances, Covariances are the same
- Time-Varying Effects

Substantive Example

Challenges & Potential

Time Varying Effects: Discrete Time

Challenges & Potential

Time Varying Effects: Discrete Time

Substantive Example

Challenges & Potential

Time Varying Effects: Continuous Time

Substantive Example

Challenges & Potential

Time Varying Effects: Continuous Time

Challenges & Potential

Time Varying Effects: Discrete & Continuous Time

Challenges & Potential

Direct & Indirect Effects: Changing Inferences

From a continuous time perspective, constructs continue to interact and accumulate, even between observations

Challenges & Potential

Time Varying Effects: Discrete & Continuous Time

• Differing Perspectives on Modeling Time Affect Developmental Inferences

Challenges & Potential

- Discrete CLPM: Observations are regressed on prior observations without need for an explicit model
- Continuous Differential Equation: A specific model describing processes is required; strong theories of change processes
- Language of derivatives: Level, Velocity, Acceleration
- Coupling between derivatives
- Need for very specific theories of processes

Implicit, Explicit Mode

Substantive Example

Challenges & Potential 0000

Continuous Time Challenges

- Multiple methods have emerged, depending on the characteristics of the data (number/frequency of observation, assumptions about system dynamics)
 - Analytic Solutions to Stochastic Differential Equations (e.g., Exact Discrete Model, Ornstein–Uhlenbeck process)
 - Numerical Approximations (e.g., Integration of Structural-Differential Equations)
 - Generalized Local Linear Approximation, Generalized Orthogonal Derivative Estimates
 - Latent Differential Equations
 - Kalman Filter
 - Functional Data Analysis
- Software resource are available for some models, but not in all software packages
- Many pre-programmed software make it easy to run a model, but may not flexibly adapt to novel models

Challenges & Potential

Differing Perspectives on Modeling Time

Discrete Time

- Many relations can be captured be correlating/regressing repeated observations; flexible
- Effects depend on lag between observations; "snapshot" of effects
- May misattribute some variance, depending on sampling rate and nature of how constructs change in time

Continuous Time

- Requires a specific model of change from one observation to the next; tests of specific processes
- Can compare differing change relations (level→velocity, velocity→velocity), even with few observations
- Effects can be estimates for a range of lags; may offer insight as to how effects change as a function of lag
- Accuracy of variance attribution likely depends on match between model and reality

Implicit, Explicit Model

- Deboeck, P. R., Preacher, K. J. & Cole, D. A. (in press). Mediation Modeling: Differing Perspectives on Time Alter Mediation Inferences. In K. van Montfort, J. Oud & M. Voelkle (Eds.) *Continuous Time Modeling in the Behavioral and Related Sciences*. Springer.
- Deboeck, P. R., Nicholson, J. S., Kouros, C., Little, T. D. & Garber, J. (2015). Integrating developmental theory and methodology: Using derivatives to articulate change theories, models, and inferences. *Applied Developmental Science*, 19 (4), 217–231.
- Deboeck, P. R. & Boulton, A. J. (2016). Integration of Stochastic Differential Equations using Structural Equation Modeling: A Method to Facilitate Model Fitting and Pedagogy. *Structural Equation Modeling, 23*, 888–903.
- Deboeck, P. R. & Preacher, K. J. (2015). No Need to be Discrete: A Method for Continuous Time Mediation Analysis. *Structural Equation Modeling*, 23, 61–75.